empty pericarp4 encodes a mitochondrion-targeted pentatricopeptide repeat protein necessary for seed development and plant growth in maize.
نویسندگان
چکیده
The pentatricopeptide repeat (PPR) family represents one of the largest gene families in plants, with >440 members annotated in Arabidopsis thaliana. PPR proteins are thought to have a major role in the regulation of posttranscriptional processes in organelles. Recent studies have shown that Arabidopsis PPR proteins play an essential, nonredundant role during embryogenesis. Here, we demonstrate that mutations in empty pericarp4 (emp4), a maize (Zea mays) PPR-encoding gene, confer a seed-lethal phenotype. Mutant endosperms are severely impaired, with highly irregular differentiation of transfer cells in the nutrient-importing basal endosperm. Analysis of homozygous mutant plants generated from embryo-rescue experiments indicated that emp4 also affects general plant growth. The emp4-1 mutation was identified in an active Mutator (Mu) population, and cosegregation analysis revealed that it arose from a Mu3 element insertion. Evidence of emp4 molecular cloning was provided by the isolation of four additional emp4 alleles obtained by a reverse genetics approach. emp4 encodes a novel type of PPR protein of 614 amino acids. EMP4 contains nine 35-amino acid PPR motifs and an N-terminal mitochondrion-targeted sequence peptide, which was confirmed by a translational EMP4-green fluorescent protein fusion that localized to mitochondria. Molecular analyses further suggest that EMP4 is necessary to regulate the correct expression of a small subset of mitochondrial transcripts in the endosperm.
منابع مشابه
Empty pericarp5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize.
In flowering plants, RNA editing is a posttranscriptional mechanism that converts specific cytidines to uridines in both mitochondrial and plastidial transcripts, altering the information encoded by these genes. Here, we report the molecular characterization of the empty pericarp5 (emp5) mutants in maize (Zea mays). Null mutation of Emp5 results in abortion of embryo and endosperm development a...
متن کاملPPR2263, a DYW-Subgroup Pentatricopeptide repeat protein, is required for mitochondrial nad5 and cob transcript editing, mitochondrion biogenesis, and maize growth.
RNA editing plays an important role in organelle gene expression in various organisms, including flowering plants, changing the nucleotide information at precise sites. Here, we present evidence that the maize (Zea mays) nuclear gene Pentatricopeptide repeat 2263 (PPR2263) encoding a DYW domain-containing PPR protein is required for RNA editing in the mitochondrial NADH dehydrogenase5 (nad5) an...
متن کاملPPR8522 encodes a chloroplast-targeted pentatricopeptide repeat protein necessary for maize embryogenesis and vegetative development
The pentatricopeptide repeat (PPR) domain is an RNA binding domain allowing members of the PPR superfamily to participate in post-transcriptional processing of organellar RNA. Loss of PPR8522 from maize (Zea mays) confers an embryo-specific (emb) phenotype. The emb8522 mutation was isolated in an active Mutator (Mu) population and co-segregation analysis revealed that it was tightly linked to a...
متن کاملRice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria.
RNA editing is the alteration of RNA sequences via insertion, deletion and conversion of nucleotides. In flowering plants, specific cytidine residues of RNA transcribed from organellar genomes are converted into uridines. Approximately 35 editing sites are present in the chloroplasts of higher plants; six pentatricopeptide repeat genes involved in RNA editing have been identified in Arabidopsis...
متن کاملThe pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 Intron 1 in Arabidopsis thaliana.
The mitochondrial NADH:ubiquinone oxidoreductase complex (Complex I) is a large protein complex formed from both nuclearly and mitochondrially encoded subunits. Subunit ND1 is encoded by a mitochondrial gene comprising five exons, and the mature transcript requires four RNA splicing events, two of which involve trans-splicing independently transcribed RNAs. We have identified a nuclear gene (OT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 19 1 شماره
صفحات -
تاریخ انتشار 2007